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Taxonomy of Generative Models

What we’ve learned:
• PPCA
• VAE

What we’ve learned:
• Markov Models, HMMs, LDSs, 

RNNs

What we study now:
• Variants of RNN architectures
• Applications



• Many kinds of models
• Markov Chains
• Hidden Markov Models
• Markov Random Fields
• Linear Dynamical Systems
• Recurrent Neural Networks
• Transformers

• Last lecture
• Model: Introduced the vanilla RNN architecture
• Inference: Unfolding
• Training: Backpropagation Through Time
• Variants of RNNs: LSTMs, GRUs

Autoregressive Models

𝑧!

𝑦!

𝑥!

𝑔, 𝐴

𝑊

𝑓, 𝐶



• We will continue on Recurrent Neural Networks
• Sequence to Sequence Models
• Align and Translate Model
• Image Captioning

• Generalizations of Vanilla 
Neural Networks: RNNs 
can be very flexible, 
depending on the task!

This Lecture

Image 
Captioning

Action 
Prediction

Video 
Captioning

Video 
Segmentation

Image 
Classification

𝑧!

𝑦!

𝑥!

𝑔, 𝐴

𝑊

𝑓, 𝐶



• In today’s and following lectures, we will see how the attention mechanism 
emerges into the well-know Transformer architecture today. 

Timeline in 

Sequence to Sequence Learning with Neural 
Networks [Sutskever et al. (2014)]
• First application of RNNs to Machine Translation 

Tasks
• Introducing so-called “encoder-decoder” 

architectures

2014

2015

2016

Neural Machine Translation by Jointly Learning 
to Align and Translate [Bahdanau et al. (2015)]
• Using attention mechanism during the 

decoding process

2017

Show, Attend and Tell: Neural Image Caption 
Generation with Visual Attention [Xu et al. (2016)]
• First application of attention for image captioning 
• Our first multi-modal application in this class!

Attention Is All You Need [Vaswani et al. (2017)]
• Introduced the popular architecture known as 

Transformer
• Stacking attention layers together



• Say we are given pairs of sentences, one with English and the other with Spanish
• Original sentence: “I have a big cat but a small house.” 
• Translated sentence: “Tengo un gato grande pero una casa pequeña.”

• In Conditional Language Modeling (CLM), we want to compute

!𝑦!:#! = argmax
$":$!

𝑃% 𝑦!:#! 	 𝑥!:#%)

• Here:
• *𝑦":$!  is the target sentence
• 𝑥":$"  is our original sentence
• 𝜃 is the parameters of our language model

• So, what is our model? And how do we learn 𝜃?

Consider the task of Machine Translation



• The high-level idea is as follows:
• A RNN allows us to encode our source sentence (English) 𝑥":$ to some latent (hidden) 

space 𝑧":$. This latent space encodes then semantics of the source sentence. 
• Once the semantics are captured, we want to decode it into the language we desire, i.e 

target sentence (Spanish) 𝑦":$.

•  A similar structure can be found in VAEs, where we also have an encoder-
decoder structure

Overview

ENCODER: Each layer outputs 𝑝(𝑥!|𝑥":!$%),
with some hidden  𝑝 𝑧! 	 𝑧!$% , 𝑥!)

Source Sentence
(English)

𝑥 = (𝑥" , … , 𝑥&!)

Target Sentence
(Spanish)

𝑦 = (𝑦" , … , 𝑦&')

DECODER: Each layer outputs 𝑝 𝑦! 	𝑦":!$% , 𝑠! , 𝑐 ,
with some hidden state 𝑝 𝑠! 	 𝑠!$% , 𝑦!$% , 𝑐)

Context
𝑝 𝑐	 𝑧":&!)



• Remarks on Architecture from Sutskever et al. (2014):
• 𝑓2345627, 𝑓6245627 , 𝑔6245627 are parameterized by LSTM layers. 
• In theory, the context vector can be the output of a more complex function ℎ that takes in 

the entire sequence of hidden states, i.e. 𝑐 = ℎ(𝑧":$). But they found virtually no 
difference in performance when compared to only using the very last state.

• 𝑔2345627 is not needed since we are not “decoding” from the ENCODER block. 

RNN Encoder-Decoder Architecture

RNN Block RNN Block RNN Block RNN Block

ENCODER: Each cell outputs hidden states 𝑧! = 𝑓()*+,(-(𝑧!$% , 𝑥!).

English Sentence
𝑥 = (𝑥" , … , 𝑥&!)

Frase en español
𝑦 = (𝑦" , … , 𝑦&')

Decoder: Each cell outputs sequences 𝑦! = 𝑔,(*+,(-(𝑠! , 𝑦!$%,	𝑐) 
and hidden states 𝑠! = 𝑓,(*+,(-(𝑠!$% , 𝑦!$% , 𝑐) 

RNN Block RNN Block RNN Block RNN Block

Fixed-length
Context 
Vector
𝑐 = 𝑧&!



• Learning: Suppose we have the 𝑁 samples 𝑥!:#%
& , 𝑦!:#!

&

&'(

)
 of source-target 

sentence pairs. Similar to sentence classification, we can train the entire model 
end-to-end using cross entropy loss

max
%

1
𝑁
1
&'(

)

log	𝑃%(𝑦!:#!
& ∣ 𝑥!:#%

(&) )

• Inference: To decode, we simply select the target sentence with the highest 
probability. For a given 𝑥!:#% , 

!𝑦!:#! = argmax$":$!𝑃% 𝑦!:#! 𝑥!:#%

                         = argmax$":$!𝑃% 𝑦!:#! 𝑐 𝑃% 𝑐 𝑥!:#%

Learning and Inference

Context ← EncoderDecoder → Context



• However, there are obvious flaws to this design:
• Encoding: the context 𝑐 may not be able to capture earlier parts of the source sentence
• Fixed-length Context: All the information from the source sentence is “jammed” into the 

single context vector 𝑐.

• As a result, this design often fails to capture long range dependences. 

Major Flaw in Fixed-context seq2seq Models

ENCODER: Each layer outputs 𝑝(𝑥!|𝑥":!$%),
with some hidden  𝑝 𝑧! 	 𝑧!$% , 𝑥!)

Source Sentence
(English)

𝑥 = (𝑥" , … , 𝑥&!)

Target Sentence
(Spanish)

𝑦 = (𝑦" , … , 𝑦&')

DECODER: Each layer outputs 𝑝 𝑦! 	𝑦%:!$% , 𝑠! , 𝑐 ,
with some hidden state 𝑝 𝑠! 	 𝑠!$% , 𝑦!$% , 𝑐)

Context
𝑝 𝑐	 𝑧":&)



• Q: How can we improve fixed-context seq2seq models?
• A: one possibility is to make the context time-dependent! 
• If our new context can better capture the information from each word, then it should prove 

long-range dependencies. 

• How should we model the probabilities 𝑝 𝑐!:#% 	 𝑧!:#%) and 𝑝 𝑦, 	𝑦!:,-(, 𝑠, , 𝑐, ?

Improving seq2seq Models

ENCODER: 𝑝(𝑥!|𝑥":!$%)
with some hidden  𝑝 𝑧! 	 𝑧!$% , 𝑥!)

Source Sentence
(English)

𝑥 = (𝑥" , … , 𝑥&!)

Target Sentence
(Spanish)

𝑦 = (𝑦" , … , 𝑦&')

DECODER: Each layer outputs
𝑝 𝑦! 	𝑦":!$% , 𝑠! , 𝑥":&! = 𝑝 𝑦! 	𝑦":!$% , 𝑠! , 𝑐!

Time-dependent Context:
𝑝 𝑐":&! 	 𝑧":&!)



• Intuition: Translation of the word 𝑥,  to 𝑦,  depends on the contexts of both the 
source sentence 𝑥!:#  and target sentence 𝑦!:#.
• The latent space should be able to capture what is important

• Take our Spanish example: 
• Original sentence: “I have a big cat but a small house.” 
• Translated sentence: “Tengo un gato grande pero una casa pequeña.”
• Notice that the translation doesn’t exactly align
• Hence we need a way to tell the model what part of the sentence to focus on

• High-Level Idea: During decoding, each context 𝑐,  to be a summary of the 
sources’ hidden states 𝑧!:#%  and the target’s current hidden states 𝑠,

Align and Translate [Bahdanau et al. (2015)]



Align and Translate [Bahdanau et al. (2015)]

• Define the probability of the target word 𝑦,  at time 𝑡 as

𝑝 𝑦, 𝑦!:,-(, 𝑠, , 𝑥!:#% = 𝑔./01./2(𝑦,-(, 𝑠, , 𝑐,)

• Here 𝑠, = 𝑓./01./2(𝑠,-(, 𝑦,-(, 𝑐,)	 is hidden state of the RNN decoder that takes 
in the previous word 𝑦,, the previous hidden state 𝑠,, and a context vector 𝑐,  as 
input.
•  Similar to before, 𝑓6245627 and 𝑔6245627 are functions parameterized by neural networks. 

DECODER: sequence 𝑦! = 𝑔,(*+,(- 𝑦!$% , 𝑠! , 𝑐!  
with hidden states	𝑠! = 𝑓,(*+,(-(𝑠!$% , 𝑦!$% , 𝑐!)	

ENCODER: 𝑝 𝑥! 𝑥":!$% , 𝑝 𝑧! 	 𝑧!$% , 𝑥!) = 𝑅𝑁𝑁(𝑥":&!)
Source Sentence

(English)
𝑥 = (𝑥" , … , 𝑥&!)

Target Sentence
(Spanish)

𝑦 = (𝑦" , … , 𝑦&')

Time-dependent Context: 𝑝 𝑐":&! 	 𝑧":&!) = Attention



Align and Translate
• Decoder: context vector 𝑐,  is computed as a weighted sum 

of the hidden states 𝑧3:

• Here:
• 𝑐! is the expected hidden state over all the hidden states with 

probability 𝛾!D.
• 𝛾!D  is the probability that the target word 𝑦! is aligned to, or 

translated from, a source word 𝑥D.
• 𝑎 is called the Alignment model

• Computes how well the inputs around position 𝑗 and the output at 
position 𝑡 match

• Typically chosen to be a feedforward neural network

𝑐! = 	4
DEF

$"

𝛾!D𝑧D 𝛾!D =
exp(𝑒!D)

∑GEF
$" exp(𝑒!G)

Context vector Weights of hidden states

𝑒!D = 𝑎 𝑠!HF, 𝑧D

Alignment model

𝑠"#$ 𝑠" ……

𝑧% 𝑧$ 𝑧& 𝑧'!…

⨁

𝛾",$ 𝛾",& 𝛾",) 𝛾",'!

𝑦"#$ 𝑦"

𝑥'!𝑥&𝑥$𝑥%

𝑐"



Align and Translate
• In Bahdanau et al. (2015), they made the following design 

choices:
• Encoder: Using a Bi-directional RNN, compute the forward and 

backward hidden states ℎ! and ℎ! using input 𝑥 = 𝑥", … , 𝑥$ . 
Concatenate them as one encoder hidden state 𝑧! = ℎ! 	ℎ!] 
(assume they are row vectors). Hidden states are also called 
annotations. 

• Decoder: Using a single direction RNN with Attention 
mechanism and alignment model

𝑎 𝑠IHF, 𝑧D = 𝑣JKtanh(𝑊J𝑠IHF + 𝑈J𝑧D) 

• Ultimately, these design choices are flexible and 
application-dependent. 



Visualization of Annotations and Alignments

• Correlation between the source 
sentence (English) and target 
sentence (French) 

• Able to show that some target words 
“attend” to multiple target words

• Diagonal: 𝑥,  matches with 𝑦,
• Cross-Diagonal: context dependent



• Today we covered two seq2seq models:
• Encoder-Decoder with fixed context [Sutskever et al. (2014)]
• Time-dependent context with Attention Mechanism [Bahdanau et al. (2015)]

• Comparing seq2seq models
• Bi-directional RNNs instead of LSTMs
• Alignment model instead of single fixed-vector hidden states
• Have context vector 𝑐! that depends on the timestep

• Next lecture:
• Using attention mechanism for image captioning
• Is attention all your need? 

Recap
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Encoder-Decoder Architectures
• Encoder-Decoder Architectures allow us to

• Learn a meaningful hidden representation for our input
• Via a Decoder, make use of our hidden representation for downstream tasks

• So far, our main motivation has been driven by Language
• Machine Translation, Text Summarization, etc

• What about Cross Modalities? Language-to-Vision?



• Today we will talk about Image Caption Generation using a combination of 
Variational Auto Encoders (VAEs) and Recurrent Neural Networks (RNNs)

• Introduced in Xu et al (2016) “Show, Attend and Tell: Neural Image Caption 
Generation with Visual Attention”

• Task: Given an image, generate a sentence that describes the image
• Can be seen as a combination of Object Detection and Machine Translation

Up Next



• Today we will talk about Image Caption Generation using a combination of 
Variational Auto Encoders (VAEs) and Recurrent Neural Networks (RNNs)

• Our overall pipeline:

• Similar to any language task, suppose we are given a vocabulary of size 𝐾, a 
sentence of length 𝑇 can be presented by each word being a one-hot embedding

𝑦 = 𝑦!, … , 𝑦# , 𝑦, ∈ ℝ6

Task



Image Encoder
• An image can have many sources of information

• Ideally our hidden representation should be meaningful, in the sense that it 
should capture all the semantic parts of the image

Adult

Child

TreesFrisbee



• To capture these meaningful 
features, we will feed the image 
through a (pre-trained) 
Convolutional Neural Network

• Then use the feature vectors 𝑥7  of 
earlier convolutional layers to 
represent low-level features

• Denote each part by

 𝑥 = 𝑥( … |	𝑥8] ∈ ℝ#%×:

   where 𝑇;  is the number of low-level features of dimension 𝐷

Image Encoder: Convolutional Neural Networks

Adult 𝑥L
Child 
𝑥M

Trees
𝑥N

Frisbee 𝑥F

Figure above: In an ideal situation, each semantic part is 
presented by a low-level feature vector 𝑥/ . 



• Similar to Align and Translate, now we have to design the context vectors 
• For image captioning, we will use attention mechanisms to attend to different locations of 

the image

• So How is the context vector E𝑐,  computed using our image features 𝑥(…𝑥#%?

Decoder: LSTM with Context

RNN DECODER: sequence 𝑦! = 𝑔,(*+,(- 𝑦!$% , 𝑠! , 𝑐!  
with hidden states	𝑠! = 𝑓,(*+,(-(𝑠!$% , 𝑦!$% , 𝑐!)	

IMAGE ENCODER: 𝑥 = 𝑥" , … , 𝑥&! = 𝐶𝑁𝑁(Image)Image

Target Sentence
(Image Caption)
𝑦 = (𝑦" , … , 𝑦&')

Time-dependent Context: 𝑝 𝑐":&! 	 𝑧":&!) = Attention



• 𝑐,  is a context vector that presents the relevant part of the image input at time 𝑡
• There are two ways to compute 𝑐,  :

• Option 1: 𝜙 =	Hard Attention: only one of the 𝑇T image locations is chosen
• Option 2: 𝜙 =	Soft Attention: all of them is weighted in some way

• Similar to Align and Translate model, we can define:

Decoder: Context Vector and Attention

𝑒!I = 𝑎(𝑥I , 𝑠!HF)𝛾!D =
exp(𝑒!D)

∑GEF
$" exp(𝑒!G)

“Attention Model”
a multi-layer perceptron

Weights, for which of the 𝐿 
positions to attend to

𝑐! = 𝜙(𝑥F, … , 𝑥U , 𝛾!,F, … , 𝛾!,U)
Some function 𝜙 of using 
the attention weights and 

features to combine a 
context vector. 

Image Features 𝑥% , … , 𝑥&!
Decoder’s Hidden Features 𝑠% , … , 𝑠&



• Stochastic Hard Attention implies we use a “on-off” way to choose which location 
of the image to focus
• Meaning we can only choose one location each time

• Let !𝛾, ∈ 0, 1 8  be a one-hot location variable that represents where the model 
decides to focus attention when generating the 𝑡th word.
• We can treat the attention locations as intermediate latent random variables

• This means we can treat 𝛾,  as a categorical distribution:

• And we can just sample this distribution during inference to obtain samples for 
the context 𝑐̂,.

First option for 𝜙: Stochastic Hard Attention

𝑝 *𝛾!,I = 1	 *𝛾F:!HF, 𝑥F, … , 𝑥U) = 	 𝛾!,I 	 𝑐̂! = 4
GEF

$"

*𝛾!,G𝑥G

*𝛾!	~	Categorical(𝛾!,F, … , 𝛾!,$")



• While it is intuitive to parameterize !𝛾, 	~	Categorical(𝛾,,(, … , 𝛾,,#%), it raises the 
question of how to train the entire model end-to-end? 
• This is the same issue we face in VAEs! 
• Hence we can use the Variational Lower Bound approach

• To backpropagate through the entire model, we need to define a variational 
lower bound on the marginal log-likelihood log 𝑝 𝑦!:# 	 𝑥(:#%) of observing the 
sequence of words 𝑦!:#  given image features 𝑥

• Quick Recall: Let 𝑋 and 𝑍 be a random variable, jointly distributed with 
distribution 𝑝% . If 𝑝%(𝑋) is the marginal distribution of 𝑋 and 𝑝% 𝑍 𝑋) is the 
conditional distribution of 𝑍 given X. Then for any sample 𝑥	~	𝑝%  and any 
distribution 𝑞=, we have

Stochastic Hard Attention (Learning)

log 𝑝V 𝑥 ≥ 	𝔼W~Y*[log
𝑝V(𝑥, 𝑧)
𝑞Z 𝑧

]



• Just like our VAE model, we may now consider our context 𝑝(𝑐) as our latent 
variable. Then we can derive the ELBO.

• Define
• 𝜓 as the parameters of the encoder 𝑞 𝑐	 𝑥), the distribution of context vectors from CNNs.
• 𝜃 as the parameters of the decoder 𝑝 𝑦	 𝑐, 𝑥), the image captioner.

• The Evidence Lower Bound 𝐿>:

Stochastic Hard Attention (Learning)

𝐿V,Z(𝑐, 𝑥, 𝑦) =4
4

𝑞Z 𝑐	 𝑥) log 𝑝V 𝑦	 𝑐, 𝑥)

≤ log4
4

𝑞Z 𝑐	 𝑥)𝑝V 𝑦	 𝑐, 𝑥)	

= log 𝑝V 𝑦	 𝑥)

(Jensen’s Inequality)

(Marginal Log-Likelihood)



• Our Lower Bound: 𝐿%,=(𝑐, 𝑥, 𝑦) = ∑0 𝑞= 𝑐	 𝑥) log 𝑝% 𝑦	 𝑐, 𝑥)
• To learn we will need the gradient. For both parameter 𝑊 = {𝜃, 𝜓} in our RNN, 

we can estimate the gradient using Monte Carlo sampling approximation.

• The exact derivative for the ELBO objective (derivation next slide):
𝜕𝐿
𝜕𝑊

=1
0

𝑞= 𝑐 𝑥 [
𝜕 log 𝑝% 𝑦 𝑐, 𝑥

𝜕𝑊
+ log 𝑝% 𝑦	 𝑐, 𝑥)

𝜕log	𝑞= 𝑐	 𝑥) 
𝜕𝑊

]

• The estimated derivative using Monte Carlo sampling approximation, with 
!𝛾, 	~	Categorical 𝛾,,(, … , 𝛾,,8  and 𝑐̂, = ∑?'(

#% !𝛾,,?𝑥?:
𝜕𝐿
𝜕𝑊

=
1
𝑀
1
@'(

A

[
𝜕 log 𝑝%(𝑦 ∣ 𝑐̂(@), 𝑥)

𝜕𝑊
+  log 𝑝%(𝑦 ∣ 𝑐̂(@), 𝑥)

𝜕 log 𝑞= 𝑐̂ @ 	 𝑥)
𝜕𝑊

] 

Stochastic Hard Attention (Learning)



• 𝐿%,=(𝑐, 𝑥, 𝑦) = ∑0 𝑞= 𝑐	 𝑥) log 𝑝% 𝑦	 𝑐, 𝑥)

𝜕𝐿%,=(𝑐, 𝑥, 𝑦)
𝜕𝑊

   = ∑0 𝑞= 𝑐 𝑥 B CDE F&($∣0,;)
BH

+
BI' 0	 ;) 

BH
log 𝑝% 𝑦	 𝑐, 𝑥)  (chain rule)

   = ∑0 𝑞= 𝑐 𝑥 B CDE F&($∣0,;)
BH

+ 𝑞= 𝑐	 𝑥)
BCDE	I' 0	 ;) 

BH
log 𝑝% 𝑦	 𝑐, 𝑥)

   = ∑0 𝑞= 𝑐 𝑥 [B CDE F& 𝑦 𝑐, 𝑥
BH

+
BCDE	I' 0	 ;) 

BH
log 𝑝% 𝑦	 𝑐, 𝑥)]

• The third line uses the identity 
BI' 0	 ;) 

BH
= 𝑞= 𝑐	 𝑥)

BCDE	I' 0	 ;) 
BH

Derivation of the Gradient for Exact ELBO



• Recall our three equations:

• Hard Attention method requires us to ample the attention location 𝑐,  each time
• Instead, we can take the expectation of the context vector 𝑐,  directly

𝑐,  = 𝜙(𝑥(, … , 𝑥8 , 𝛾,,(, … , 𝛾,,8) = ∑7'(
#% 𝛾,,7𝑥7

• Then this would no longer be a ”on-off” mechanism, but a weighted sum of low-
level features instead. 

• Lucky for us, this is differentiable end-to-end using cross entropy 

Second option for 𝜙: Deterministic “Soft” Attention

𝑒!I = 𝑎(𝑥I , 𝑠!HF)𝛾!D =
exp(𝑒!D)

∑GEF
$" exp(𝑒!G)

𝑐! = 𝜙(𝑥F, … , 𝑥U , 𝛾!,F, … , 𝛾!,U)



Soft Attention vs Hard Attention



Examples of Image Caption Generation



Examples of Image Caption Generation



• We introduced a Multi-modal Encoder-Decoder architecture method to do image 
caption
• Generative: parameterize location variable with categorial variable (Hard Attention), use 

MCMC to sample and learn the RNN decoder. 
• Discriminative: use weighted sum (Soft Attention) and train everything end-to-end. 

• We have shown the brief history of Attention mechanism
• Sequence to Sequence with Neural Networks for Machine Translation

• The use of fixed-length single context vector to decode 𝑐
• Align and Translate for Machine Translation

• The use of multiple time-dependent context vectors 𝑐!
• Image Captioning 

• Soft and Hard Attention

Wrap-up



• Hard to capture long-term dependencies
• Require modification to architectures

• Training Issues: Vanishing/Exploding Gradients
• Hard to handle varying length sequences
• Sequential nature make them hard to process in parallel

• Solution to all of this: 
• Let’s not depend on recurrence anymore
• Let’s just rely “Attention” completely to capture global dependencies

Why do RNNs fall short? And what can we do?


